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This paper analyzes the dynamics of a resonantly excited single-degree-of-freedom linear
system coupled to an array of non-linear autoparametric vibration absorbers (pendulums).
The case of a 1:1:2: 2 internal resonance between pendulums and the primary oscillator is
studied. The method of averaging is used to obtain "rst order approximations to the
non-linear response of the system. The stability and bifurcations of equilibria of the averaged
equations are computed. It is shown that the frequency interval of the unstable single-mode
response, or the absorber bandwidth, can be enlarged substantially compared to that of
a single pendulum absorber by adjusting individually the internal mistunings of the
pendulums. Use of multiple pendulums is also shown to engender degenerate bifurcations as
the double-mode response &&switches'' from one pendulum to the other with changing
external excitation frequency. The e!ect of various parameters on the performance is
discussed and a strategy is developed to "nd the most e!ective parameters for maximum
bandwidth of operation. This results in a signi"cant enhancement of the performance of
autoparametric vibration absorbers.

( 2001 Academic Press
1. INTRODUCTION

Non-linear vibration absorbers based on autoparametric coupling between the system
requiring reduced response and the absorber element have been studied extensively. Haxton
and Barr [1] introduced and studied the autoparametric vibration absorber. The
autoparametric vibration absorber exploits the transfer of energy between modes, and the
saturation phenomenon, that is known to occur in quadratically coupled multi-degree-of-
freedom systems subjected to primary excitation and possessing a 1:2 internal resonance
[2, 3]. Haxton and Barr implemented the vibration absorber by attaching a cantilever beam
with a tip mass to the primary system. They reported that the autoparametric vibration
absorber did not always out-perform the more conventional linear tuned and damped
absorber [4] due to the narrow e!ective bandwidth of performance. Hatwal et al. [5}7]
studied the periodic and chaotic motions of a two-degree-of-freedom autoparametric
system under harmonic excitation. In these works, a pendulum with and without an
additional linear torsional spring was used as the vibration absorber. The pendulum was
also used by Cuvalci and Ertas [8] as a vibration absorber to reduce response of a #exible
cantilever beam. Cartmell and Lawson [9] implemented a computer-controlled sliding
mass to improve the performance of the pendulum vibration absorber.

In recent years, some active non-linear control approaches have been proposed to
improve the performance e!ectiveness of the autoparametric absorbers. These utilize the
non-linear modal coupling between a structure and a &virtual' pendulum vibration absorber
022-460X/01/360115#21 $35.00/0 ( 2001 Academic Press
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implemented through a computer. A review of these developments along with various
experimental investigations can be found in the work of Oueini et al. [10]. The most recent
studies on non-linear absorbers include the works of Pai and Schulz [11], who have
investigated ways to improve the performance of the standard 1:2 internal resonance
absorber, and Pai et al. [12], who investigated the use of higher order internal resonances.
In both studies, some experimental active control implementations were also accomplished
for the suppression of structural vibrations.

An extensive stability and bifurcation analysis of the averaged equations for
a two-degree-of-freedom autoparametric system has been carried out by Bajaj et al. [13].
Two kinds of motions were studied: (a) single-mode motions, wherein only the directly
excited primary system vibrates, and (b) coupled-mode motions in which at least one
absorber element vibrates. They showed the existence of non-trivial periodic coupled-mode
responses which arise as a result of instability of the single-mode response. The
coupled-mode equilibrium responses for the amplitude equations can undergo a Hopf
bifurcation to limit cycle oscillations. Eventually, for some parameter combinations, the
limit cycles lead to chaos by period-doubling bifurcations. These results were further
extended by a higher order averaging analysis by Banerjee et al. [14], and a Melnikov
analysis by Banerjee and Bajaj [15].

One of the main factors limiting the performance of any vibration absorber is its
bandwidth. In the case of linear tuned absorbers, many approaches have been utilized to
improve the performance. These include a recent work on a &wideband' vibration neutralizer
[16] where an array of neutralizers that are all tuned to slightly di!erent natural frequencies
is introduced. Motivated by this work, the present study considers an array of n non-
linear autoparametric pendulum vibration absorbers that is used to suppress the response
of a resonantly excited primary oscillator. The weakly non-linear resonant response of
the (n#1)-degree-of-freedom system is studied for 1:1:2: 2 internal resonance. The
method of averaging is used to obtain the "rst order averaged equations that govern
the evolution of the amplitudes and phases of response of the various degrees-of-freedom.
The coupled system's dynamic response is studied using analytical as well as numerical
bifurcation techniques [17]. The performance of the system with n pendulums as absorbers
is compared to that of the system with a single autoparametric vibration absorber
with identical total mass. It is shown that the e!ective frequency range of operation of
the absorber can be increased signi"cantly by properly adjusting the internal mistunings
between the natural frequency of the primary system and the frequencies of the individual
pendulums. The e!ect of other system parameters on the absorbers' performance is also
investigated.

It should be noted that we have restricted our analysis to weak excitation. The e!ect of
increase in the amplitude of excitation can be addressed by keeping additional terms in
the approximation to the periodic solution or by a higher order averaging analysis,
as was done for the autoparametric vibration absorber with one pendulum [6, 14].
Banerjee et al. [14] showed that higher order averaging eliminates the structurally
unstable saturation phenomenon predicted by "rst order analysis. Furthermore, more
complex non-linear responses can arise for the system, as was shown in the study of
Hatwal et al. [6].

2. SYSTEM DESCRIPTION AND EQUATIONS OF MOTION

The (n#1)-degree-of-freedom autoparametric system is shown in Figure 1. The primary
system, whose vibration is to be attenuated, consists of a linear spring}mass}damper system



Figure 1. The autoparametric vibratory system depicting the primary mass whose vibration is to be attenuated,
along with the n attached pendulums.
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undergoing translational motions in the vertical direction. The block in the primary system
has mass M, the linear spring has sti!ness k

b
, and the damper has damping coe$cient c

b
.

The block is excited by the harmonic external force P
0

cos(ut). The secondary system or the
vibration absorber consists of an array of n pendulums attached to the block. The equations
of motion for this system are derived here using the Lagrangian formulation. The resulting
equations of motion are
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Here, m
i
denotes the mass of the ith pendulum, h

i
denotes its angular displacement, l

i
is its

length, k
i
is the sti!ness of the torsional spring associated with the ith pendulum, and c

i
is

the damping coe$cient of the corresponding linear velocity proportional torsional damper.
Also, m is the total mass of the pendulums array and r

k
denotes the &&mass fraction'' of the

kth pendulum. The parameter l can be identi"ed as the &&root mean square'' length (r.m.s.
length) of the pendulum system. Then l
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represents a &&length fraction'' associated with the

kth pendulum. Further note that +n
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"1. The non-dimensional

equations of motion for the system can now be obtained by using the non-dimensional
parameters introduced by Hatwal et al. [5] and Bajaj et al. [13]. The resulting equations of
motion are
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where
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and where a prime denotes derivative with respect to the non-dimensional time q. In these
equations, X

1
is the natural frequency of the primary mass system, u

1
is the natural

frequency of the locked-pendulum (all pendulums at rest) system, a is the ratio of
the locked-pendulum frequency to the excitation frequency, and b)

i
denotes the ratio of

the linear natural frequency of the ith pendulum to the frequency of the locked-pendulum
system. R de"nes the ratio of the total mass of the absorbers to that of the primary
system, also known as the &&mass ratio'' for the array. Note also that a pendulum's
natural frequency is controlled both by its length and by the torsional spring associated
with it.

3. FORMULATION AND THE AVERAGED EQUATIONS

We de"ne the following scale changes:
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where e is some arbitrary scaling parameter such that 0(e@1. This scaling restricts the
system to small motions (thus the trigonometric functions are replaced by their Taylor
series expansions), small damping and small forcing when it is resonantly excited with
a near 1. Substituting scalings (7) into equations (4) and (5), using Taylor series expansion
upto O (e2), and diagonalizing the mass matrix yields
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In equations (8), a and p
i
, i"1,2, n, are the (n#1) non-dimensional linear natural

frequencies with the excitation frequency being equal to unity. The angular variables hM
i
, and

the damping m and mM
i
, i"1,2, n, have been introduced for brevity of expressions [13].

These (n#1) equations can now be written in "rst order vector form as
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Now, using the transformation
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equations (10) are transformed into the &standard form' for "rst order averaging [18, 3].
The transformation matrix U is a fundamental matrix solution of the linear system
given in equations (10) for e"0. The transformed equations (10) in standard form
are
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To leading order, the averaged equations corresponding to the original non-autonomous
system (15) are given by [13]
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We are interested in the study of the autoparametric vibration absorber when both
internal and external resonances exist. This requirement is made explicit by the introduction
of external mistunings:
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locked-pendulum natural frequency, and p
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, i"1,2, n, are the external mistunings from

perfect 1:2 resonance between the linear natural frequencies of the pendulums and the
frequency of excitation. The function g
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(u) for the (n#1)-degree-of-freedom system under
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both the external resonance conditions is given by

g
10

(u)"

i
ggg
j
ggg
k

!mu
1
#p

b
u
2
#

n
+
i/1

2r
i
l
i
u
1i

u
2i

1

2
FK !p

b
u
1
!mu

2
#

n
+
i/1

r
i
l
i
(u2

2i
!u2

1i
)

!mM
1
u
11
#p

1
u
21
#

1

2l
1

(!u
1
u
21
#u

2
u
11

)

!mM
1
u
21
!p

1
u
11
!

1

2l
1

(u
1
u
11
#u

2
u
21

)

!mM
2
u
12
#p

2
u
22
#

1

2l
2

(!u
1
u
22
#u

2
u
12

)

!mM
2
u
22
!p

2
u
12
!

1

2l
2

(u
1
u
12
#u

2
u
22

)

F

!mM
n
u
1n
#p

n
u
2n
#

1

2l
n

(!u
1
u
2n
#u

2
u
1n

)

!mM
n
u
2n
!p

n
u
1n
!

1

2l
n

(u
1
u
1n
#u

2
u
2n

)

e
ggg
f
ggg
h

. (20)

Substitution of the functional form in equation (20) into equation (17) yields the averaged
equations in Cartesian co-ordinates. Transformation of the averaged equations into
polar co-ordinates via the change of variables (u
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The internal mistuning d
i
from the exact internal resonance between the linear natural

frequency of the locked-pendulum motion and the natural frequency of the ith pendulum is
de"ned as
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Equations (21) are the polar form of the "rst order averaged equations for the
(n#1)-degree-of-freedom autoparametric system. The variables a

b
and a

1
, a
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respectively, the amplitudes of the locked-pendulum block motion and the pendulum
motions. They can also be interpreted to represent "rst order approximations to the
PoincareH map of the original non-autonomous system [19].

4. STEADY STATE SOLUTIONS OF THE AVERAGED SYSTEM

Steady state constant solutions are easy to obtain from the polar form of the averaged
equations (equations (21)). The steady state constant solutions for the locked-pendulum
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Here, overbarred quantities correspond to single-mode solutions.
The steady state constant solutions for the case of only one pendulum and the primary
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These solutions will be termed &double-mode' solutions, and they are signi"ed by double
overbarred quantities. Clearly, real solutions for the quadratic equation (25) exist only if
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The solutions described so far are identical to the locked-pendulum and coupled-mode
motions exhibited by the two-degree-of-freedom autoparametric system [13].

The steady state constant solutions for the case of two pendulums in motion present
non-trivial dynamics. To study these motions, let a
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Similarly, the equations for a@
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For the steady state solutions to exist, a
b
obtained from either of the above two equations

must be the same. Thus, the necessary condition for the existence of steady state solutions
for the case of two pendulums in motion is
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This suggests that steady state constant solutions for the case of two pendulums in motion
exist only for parameters satisfying the condition given in equation (29). The conditions for
the case of any m pendulums in motion (m(n) can be obtained in a similar way, and are
given by
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It can be observed that the conditions in equation (30) for the existence of solutions for more
than two pendulums in motion are very stringent. These conditions will certainly
be satis"ed if all the pendulums are identical. It can be easily shown that in such a case the
individual pendulum amplitudes (a

j
's) are not determined uniquely. The phases of

pendulum motions are, however, identical. The "rst two of equations (21) can be solved to
obtain a locus of steady state solutions for the amplitudes of the m pendulums in motion as
follows:
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The amplitudes of the individual pendulums are determined by initial conditions. An
explicit solution can be obtained by assuming all the pendulums to have identical amplitude
(say, a

j
). This is certainly a plausible solution as all the pendulums are identical.

Consider now the case when the pendulums are not all identical, i.e., the parameters
associated with the pendulums, l

j
, r
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, mM
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, d
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, j"1, 2,2, m, are not the same. Then, the

conditions in equation (30) are no longer satis"ed for all values of the external frequency
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. Note that the external mistunings p
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when the external mistuning p
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is varied to "nd its e!ect on the system response while the

other system parameters are held constant. The condition in equation (29) for the motion of
two pendulums gives a quadratic equation for p
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. This suggests that the two pendulums can

be in motion for at most two values of p
b
. Thus, except for those two particular values of p

b
,

only one pendulum (if a real and positive solution exists for equation (25)) can be in motion,
i.e., double-mode motions (in which the primary system, and one of the pendulums has
non-zero response) are the most likely responses for the (n#1)-degree-of-freedom system.
The stability conditions, derived in the next section, determine which one of the
n pendulums will be performing the non-trivial motion.

It should be noted that the satisfaction of equation (29) for a speci"c p
b
only ensures the

existence of solutions for the two pendulums for that particular value of p
b
. Moreover,

the individual pendulum motion amplitudes cannot be obtained explicitly. Equation (31)
can be used to obtain the locus of steady state solutions for the amplitudes of the two
pendulums in motion.



Figure 2. Resonant response of the system with two pendulums as a function of the excitation frequency p
b
. The

system parameters are: mass fractions, r
1
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"0)5; internal mistunings, d
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2
"!1)0; length fractions,
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"1/J2. (a) Amplitude of the primary system, a
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; (b) response amplitude of the "rst pendulum,
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; (c) response amplitude of the second pendulum, a
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; (d) set of equilibria branching from the degenerate

point &*'.
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Steady state canstant solutions for the case of more than one pendulum in motion can be
obtained analytically as well as numerically using the continuation and bifurcation analysis
software AUTO [17]. Figure 2 shows a representative set of steady state constant solutions
a
b
, a

1
and a

2
as a function of de-tuning p

b
for a three-degree-of-freedom autoparametric

system. This system consists of two pendulums as absorbers. The forcing amplitude FK is set
equal to 2)0 for all the results presented here. The damping constants for the "gure and
m"mM

1
"mM

2
"0)25 and the internal mistunings are d

1
"1)0 and d

2
"!1)0. The pendulums

have the same lengths and masses, i.e., the &&mass fractions'' are r
1
"r

2
"0)5, and the

&&length fractions'' are l
1
"l

2
"1/J2. Note that di!erent frequency mistunings can be

achieved by using unequal torsional springs. Stable solutions are shown by solid lines and
the unstable solutions are shown by dotted lines. Whenever projections of a stable and an
unstable solution branch overlap in a "gure, both solid and dashed lines are drawn
alongside each other. The pitchfork bifurcation points are shown by a &square' symbol and
turning points are indicated by a &#' symbol. Note also that only the single-mode motions,
where only the primary system oscillates, exist for all values of p

b
. The &double-mode'

motions, where only one pendulum has a non-zero response along with the primary system,
exist between the two turning points. These responses have the next widest range of
existence in the frequency p

b
. Finally, the response in which both the pendulums have

non-trivial motions exists only at p
b
"0. For the parameters chosen for the system,

condition (29) is satis"ed only at this p
b
. The &*' symbol is used to denote the &degenerate'



Figure 3. Resonant response of the system with three pendulums as a function of the excitation frequency p
b
.

The system parameters are: mass fractions, r
1
"r

2
"0)3, r

3
"0)4; internal mistunings, d

1
"1)0, d

2
"!1)0,

d
3
"0)0; length fractions, l

1
"l

2
"l

3
"1/J3. (a) Amplitude of the primary system, a

b
; (b) response amplitude of

the "rst pendulum, a
1
; (c) response amplitude of the second pendulum, a

2
; (d) response amplitude of the third

pendulum, a
3
.
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bifurcation at p
b
"0. It gives a manifold of equilibria for a

1
and a

2
which exists precisely

at p
b
"0.

A representative set of steady state constant solutions for the case of a system with three
pendulums is shown in Figure 3. The parameters for this system are l

1
"l

2
"l

3
"1/J3

and r
1
"r

2
"0)3, r

3
"0)4. The internal mistunings are d

1
"1)0, d

2
"!1)0 and df

3
"0)0.

All the damping constants are assumed to be 0)25. It can be seen that response for a
b
in the

vicinity of p
b
"0 is smaller than in Figure 2. The Figures 2 and 3 also clearly demonstrate

a much greater e!ective frequency range of vibration absorption as compared to that for
a single pendulum vibration absorber [13, 14]. It can also be observed that the amplitude of
the main block, aP

b
, is a minimum on the corresponding double-mode branch when the

excitation frequency equals the given internal mistuning for the pendulum, i.e., when
p
b
"d

i
. Furthermore, the maximum for the amplitude aP

b
is at a frequency of excitation for

which two pendulums can be in motion, or at a frequency corresponding to the pitchfork
bifurcation points.

We note that the steady state solutions for the case of one pendulum in motion are similar
to the ones obtained for a two-degree-of-freedom autoparametric vibration absorber.
Furthermore, it can be observed that the e!ects of forcing amplitude FK , primary system
damping m, the damping m

i
and the internal mistuning d

i
associated with the ith pendulum in

motion would be the same as that found in reference [14].



Figure 4. E!ect of increasing the mass fraction r
1

on the response of the system with two pendulums. The other
system parameters are: dampings, m"mM

1
"mM

2
"0)2; internal mistunings, d

1
"1)0, d

2
"!1)0; length fractions,

l
1
"l

2
"1/J2. (a) Response amplitude of the primary system, a

b
; (b) response amplitude of the "rst pendulum,

a
1
; (c) response amplitude of the second pendulum, a

2
.
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Here, we study the e!ects of the &&mass fraction'', r
i
, and the &&length fraction'', l

i
,

associated with the ith pendulum. Note that + n
i/1

r
i
"1 and + n

i/1
l2
i
"1, and thus we

cannot change these parameters independently. However, the double-mode response
(aP

b
O0, aP

i
O0) would depend only on the parameters associated with the ith pendulum.

Consider a system with two pendulum absorbers. The parameters for this system are
l
1
"l

2
"1/J2, d

1
"1 and d

2
"!1. All the damping constants are assumed to be 0)2. The

steady state response of this system for di!erent values of r
1

is presented in Figure 4. It can
be seen that the primary system amplitude, aP

b
, does not vary with r

1
, the mass fraction for

the "rst pendulum, as it is absent from equation (24). The amplitude of the double-mode
response aP

1
for the "rst pendulum decreases with increase in its mass fraction r

1
. As r

1
P1,

the double-mode response aP
1

has a "nite amplitude, whereas the amplitude of the other
pendulum becomes in"nite or meaningless (r

1
"1 means that the second pendulum is

massless). Note also that the frequency intervals for existence as well as stability of various
solutions are una!ected by the mass fraction.

The e!ect of the length fraction l
1

is studied for the system with equal mass fractions,
r
1
"r

2
"0)5 and is shown in Figure 5. The amplitude of the primary system increases with

increase in l
1
. The double-mode response for the pendulum, aP

1
, decreases with increase in

l
1
. As l

1
approaches 1, the steady state response aP

2
becomes in"nite or meaningless (the

pendulum with l
2
P0 is a pendulum with zero length).



Figure 5. E!ect of increasing the length fraction l
1
on the response of the system with two pendulums. The other

system parameters are: dampings, m"mM
1
"mM

2
"0)2; internal mistunings, d

1
"1)0, d

2
"!1)0; mass fractions,

r
1
"r

2
"0)5. (a) Response amplitude of the primary system, a

b
; (b) response amplitude of the "rst pendulum, a

1
;

(c) response amplitude of the second pendulum, a
2
.
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It is important to note that in the sets of results presented above, the pendulums are
di!erently mistuned relative to the primary system. In the case of identical pendulums, the
mistunings would be equal and no di!erence will exist between the responses for
the systems with one or many pendulums. Brennan [16] showed a similar increase in the
e!ective bandwidth by using an array of linear absorbers tuned to slightly di!erent natural
frequencies.

5. STABILITY AND BIFURCATION ANALYSIS

The eigenvalues of the Jacobian matrix corresponding to the single-mode solution
(equation (23)) of the averaged system in Cartesian co-ordinates (equations (20)) can be
shown to satisfy the following (n#1) quadratic equations:

j2#2mj#p2
b
#m2"0,

j2#2mM
i
j#p2

i
#mM 2

i
!0)25

aN 2
b

l2
i

"0, i"1, 2,2, n. (32)
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The "rst equation here corresponds to perturbations in the primary system motion,
whereas the latter n equations arise due to disturbances in the pendulum motions. From
equations (32), it can be deduced that no purely imaginary pairs of eigenvalues exist for
non-zero dampings and, as a result, Hopf bifurcations [19] cannot arise from the
single-mode solution. Therefore, as in reference [13], the single-mode steady state solution
can lose its stability only when an eigenvalue becomes zero. Using equations (32) and (23),
we get the following conditions for the loss of stability of the single-mode solution:

4l2
i
(p2

b
#d2

i
!2p

b
d
i
#4mM 2

i
) (m2#p2

b
)"FK 2, i"1, 2,

2
, n. (33)

If any of the conditions in equation (33) are satis"ed, the single-mode solution loses its
stability. The ith condition in equation (33) corresponding to the ith pendulum is the same
as the discriminant condition for the existence of &double-mode' steady state solutions with
aP
b
O0 and aP

i
O0. Thus, the double-mode steady state solutions arise by a pitchfork

bifurcation where condition (33) is satis"ed. It is also interesting to note that the pitchfork
bifurcation set does not depend on the mass fraction r

i
for the ith pendulum.

The eigenvalues of the Jacobian matrix, which determine the stability of the double-mode
solutions (aP

b
O0, aP

j
O0), can be shown to satisfy

J
4
j4#J

3
j3#J

2
j2#J

1
j#J

0
"0,

j2#2mM
i
j!

(l2
j
(mM 2

j
#p2

j
)!l2

i
(mM 2

i
#p2

i
))

l2
i

"0, i"1, 2,2, n, iOj, (34)

where

J
4
"1, J

3
"2(m#mM

j
),

J
2
"p2

b
#m2#4mmM

j
#2aP 2

j
r
j
,

J
1
"2mM

j
m2#2mM

j
p2
b
#2(m#mM

j
)aP 2

j
r
j
,

J
0
"2aP 2

j
r
j
(0)5aP 2

j
r
j
#mmM

j
!p

b
p
j
). (35)

An analysis of the quartic in equations (34) does not reveal any more information than is
given in Bajaj et al. [13]. They used the Routh}Hurwitz criterion to determine the stability
conditions. The stability conditions show a turning point in the double-mode solutions
branch. The double-mode solutions can also undergo a Hopf bifurcation. The equation for
the Hopf-bifurcation set for this system is

aP 2
j
r
j
(m#mM

j
)2(m2#p2

b
#2p

b
p
j
#2mmM

j
)#mmM

j
(m2#p2

b
) (m2#4mM

j
m#4mM 2

j
#p2

j
)"0, (36)

where aP
j
can be obtained from equation (25).

A detailed study of the Hopf bifurcation to amplitude-modulated motions, and then
a torus-doubling cascade leading to chaotic amplitude-modulated solutions, was performed
by Bajaj et al. [13] and Banerjee et al. [14]. The point to make here is that for zero
internal mistuning between the pendulum in motion in the double-mode response and the
primary system, the response cannot lose stability by a Hopf bifurcation. It arises in systems
with low damping only for su$ciently large internal mistuning d

i
. Thus, it may not be

di$cult to avoid the complex amplitude-modulated dynamics that can arise in the system
response.
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In this study we focus mainly on the additional quadratic equations in equations (34).
Again, to understand the signi"cance of these equations and the resulting stability
conditions, consider the three-degree-of-freedom (or two pendulums) autoparametric
system with aP

b
O0, aP

1
O0 and a

2
"0. The condition for the stability of the double-mode

solution, considering only the quadratic equation in equations (34), is

(l2
1
(mM 2

1
#p2

1
)!l2

2
(mM 2

2
#p2

2
)))0. (37)

Now consider the case when aP
b
O0, aP

2
O0 and a

1
"0. The corresponding stability

condition for this case can be shown to be

(l2
1
(mM 2

1
#p2

1
)!l2

2
(mM 2

2
#p2

2
))*0. (38)

It can be seen from the two conditions (37) and (38) that only one of these conditions can
be satis"ed at a time, except for the case when the equality holds. This suggests that, as far as
this stability condition is concerned, the stable double modes of response are mutually
exclusive, i.e., only one pendulum can execute stable non-zero steady state solution if the
stability is not lost by the quartic equation in equations (34). Note that the equality in
equation (37) is also the condition for the existence of non-zero steady state solutions for
both the pendulums (equation (29)). For the case of equality, one eigenvalue becomes zero
and the stability of the solutions cannot be determined by the linear analysis. In the
neighbourhood of the equality, one of the pendulums loses stability for the non-zero motion
while the other gains stability. At the equality, non-degeneracy conditions for simple
bifurcations are violated and a one-dimensional manifold of equilibria emerges connecting
the non-zero solution for a pendulum to its zero motion and vice versa.

The analysis for the (n#1)-degree-of-freedom system with motions involving two
pendulums reveals (n!1) such quadratic equations and the corresponding stability
condition. Using equations (34), these conditions can be written as

(l2
j
(mM 2

j
#p2

j
)!l2

i
(mM 2

i
#p2

i
)))0, i"1, 2,2, n, iOj. (39)

Considering the situation with a
i
O0, iOj and a

j
"0, it can be shown that this condition

restricts only one pendulum to possessing a stable non-zero steady state solution. The
equality in equation (39) corresponds to the existence of non-zero steady state solutions for
the ith and the jth pendulums. This equality can be written in terms of the external
mistuning p

b
, and the internal mistunings d

i
and d

j
, as

(l2
j
!l2

i
)p2

b
!2p

b
(l2

j
d
j
!l2

i
d
i
)#l2

j
d2
j
!l2

i
d2
i
#4(l2

j
mM 2
j
!l2

i
mM 2
i
)"0. (40)

As an example, consider the two-pendulum autoparametric system with dampings
m"mM

1
"mM

2
"0)2 and internal mistunings d

1
"d

2
"0)0. Let the pendulums have equal

masses, r
1
"r

2
"0)5, but di!erent lengths such that l

1
"1/J3 and l

2
"J2/3. The steady

state solutions for a
b
, a

1
and a

2
can then be found as a function of the de-tuning p

b
. The

stability condition in equation (40) gives no real root for p
b
for the given parameters of the

system, and the Routh}Hurwitz criterion for the quartic in equations (34) is always satis"ed.
This suggests that the double-mode solution with aP

2
O0 will always be unstable and, thus,

in any observed steady state motion the response of the second pendulum, a
2
, will be zero

for all values of p
b
. Figure 6 shows the response amplitudes a

b
, a

1
and a

2
for the system with

a
2
"0 as the stable solution for all values of p

b
. It is interesting to note also that the

pendulum with larger length (l
2
) has smaller non-zero amplitudes at every frequency p

b
in



Figure 6. Resonant response of the system with two pendulums as a function of the excitation frequency p
b
. The

system parameters are: mass fractions, r
1
"r

2
"0)5; internal mistunings, d

1
"d

2
"0)0; length fractions,

l
1
"1/J3, l

2
"J2/3. (a) Amplitude of the primary system, a

b
; (b) response amplitude of the "rst pendulum, a

1
; (c)

response amplitude of the second pendulum, a
2
; note that only solutions with a

2
"0 are stable for any p

b
.
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its unstable double-mode motion, while the corresponding amplitude of the primary system
is higher.

6. STRATEGY FOR THE CHOICE OF PARAMETERS

The study so far has shown that the e!ective bandwidth can be increased by using
pendulums with slightly di!erent frequencies. In this section we discuss a few guidelines for
the choice of optimum parameters giving maximum e!ective bandwidth. It can be noted
that the maximum bandwidth depends on the choice of parameters and not on the number
of pendulums. The multiple pendulums, if properly mistuned, would be important in further
minimizing the primary system response and avoiding the Hopf bifurcations in the stable
region of operation.

The bandwidth depends on the "rst and the last pitchfork bifurcation points where the
locked-mass motion loses stability. The parameters of the pendulum bifurcating to
non-zero steady state motion and the primary system determine the pitchfork bifurcation
set for the pendulum, see equation (33). This is true also for the Hopf-bifurcation set. Mass
fraction a!ects the response of the pendulum as shown in Figure 4. This indicates that
choosing the appropriate mass will be a compromise between the amplitude of oscillation



Figure 7. The pitchfork bifurcation sets in p
b
!d

1
plane. Nominal parameters are: mass fractions, r

1
"r

2
"0)5;

dampings m"mM
1
"mM

2
"0)25. (a) E!ect of increasing length fraction, l

1
; (b) e!ect of increasing the pendulum

damping, mM
1
; (c) e!ect of increasing the primary system damping, m.

AUTOPARAMETRIC VIBRATION ABSORBER 131
for the pendulum and the cost of material. Lower mass of a pendulum will lead to a larger
steady state amplitude of oscillation for that pendulum and vice versa.

The pitchfork bifurcation sets for any of the pendulums can be determined irrespective of
the total number of pendulums and the parameters of other pendulums. The equation for
the pitchfork bifurcation set is a quartic in p

b
, thus suggesting that there could be either two

or four pitchfork bifurcations for a given parameter set. This will also be evident in the
respective pitchfork bifurcation sets discussed later. From the point of view of applications,
it would be better to restrict the system parameters such that there are no more than two
pitchfork bifurcation points. When more than two pitchfork bifurcation points arise, the
bene"cial e!ect of the pendulum absorber appears over a smaller frequency range and is not
signi"cant. This can be observed from the study in reference [14] where the e!ects of
varying the internal mistuning were clearly demonstrated.

Consider now a system with two pendulums. All damping constants are taken to be 0)25
and the mass fractions are r

1
"r

2
"0)5. The pitchfork bifurcation sets for the "rst

pendulum are drawn in (p
b
, d

1
) plane. The pitchfork bifurcation set is shown for di!erent

values of l
1

in Figure 7(a). It can be seen that the range of p
b

for which two bifurcation
points exist for any given internal mistuning d

1
, increases with decrease in the length

fraction l of the corresponding pendulum, i.e., l
1
. However, this range reaches a limit for

small values of l. The pitchfork bifurcation sets can be used to determine the largest or



Figure 8. Response amplitude of the primary system, a
b
, for a system with "ve pendulums. The system

parameters are: mass fractions, r
1
"r

2
"2"r

5
"0)2; length fractions, l

1
"l

2
"2"l

5
"1/J5; internal

mistunings, d
1
"2)8, d

2
"1, d

3
"0, d

4
"!1, d

5
"!2)8. The Hopf points are shown by solid squares.

132 A. VYAS AND A. K. BAJAJ
smallest mistuning, $d
s
due to symmetry, for which only two pitchfork bifurcations will

arise for that pendulum. The mistuning d
s
, d

s
'0, signi"es the maximum possible mistuning

allowed for given parameters without having more than two pitchfork bifurcations. It can
be seen in Figure 7(a) that for l

1
"1/J5, d

s
&2)8. The pitchfork bifurcation sets for

di!erent values of primary system damping m are shown in Figure 7(c). It can be seen that
the range of p

b
for a "xed d

s
increases with decrease in m. However, this increase is very

insigni"cant and shows that the e!ective bandwidth of the autoparametric absorber is to
a large extent independent of the primary system damping. Note that the amplitude of the
primary system response does depend on this damping. The variation of the pitchfork
bifurcation set with the pendulum damping mM

i
, here mM

1
, is shown in Figure 7(b). The range of

p
b
for a "xed d

s
increases with decrease in the pendulum damping, mM

1
. It can be seen that for

these parameters the e!ect of decrease in damping for low values is insigni"cant, but it is
very prominent for higher pendulum damping values (e.g., see the set for mM

1
"0)3).

We now consider a system with "ve pendulums having the same masses and lengths, i.e.,
l
1
"l

2
"2"l

5
"1/J5 and r

1
"r

2
"2"r

5
"0)2. All the damping constants are

assumed to be 0)25. If the internal mistunings for the system are ordered such that
d
1
'd

2
'2'd

5
, the above analysis suggests that we should take d

1
"d

s
and d

5
"!d

s
.

The other mistunings are then set as d
2
"1, d

3
"0 and d

4
"!1. The steady state response

for the primary system, a
b
, is shown in Figure 8. Note that in these response curves, Hopf

points, shown by the solid squares, arise in the unstable region and do not e!ect the system
steady state motions.

In general, if Hopf bifurcations do arise at some excitation frequency p
b

for a given
internal mistuning d

i
associated with a pendulum, they might appear in regions otherwise

shown to be stable as far as pitchfork bifurcation conditions are concerned. Thus, it is
important to determine the e!ect of various parameters on the Hopf-bifurcation sets. Then,
one can try to ensure that for the optimal parameters chosen, the Hopf bifurcations are
limited to the unstable region. To illustrate how this can be achieved, again consider the
two-pendulum absorber system. The parameters for the system are r

1
"r

2
"0)5 and all

damping constants are assumed to be 0)20. The Hopf-bifurcation sets for di!erent values of
length fraction l

1
are shown in Figure 9(a). These sets should be used in conjunction with



Figure 9. The Hopf-bifurcation sets in p
b
!d

1
plane. The nominal parameters are: mass fractions, r

1
"r

2
"0)5;

dampings m"mM
1
"mM

2
"0)2. (a) E!ect of increasing length fraction, l

1
; (b) e!ect of increasing the primary system

damping, m; (c) e!ect of increasing the pendulum damping, mM
1
.
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the pitchfork bifurcation sets drawn earlier, see Figure 7. We would like to "rst ensure that
there are no more than two pitchfork bifurcation points. Then, for the internal mistuning
satisfying this requirement, the Hopf bifurcations, if they appear, should not be in the stable
region. Figure 7(a) shows that for very low values of length fraction we can come close to
d
i
"6 without having more than two pitchfork bifurcation points. Using Figure 9(a) we can

observe that for low values of length fraction, and for the region of interest, d
i
(6, two

Hopf-bifurcation points appear. One of the points is close to p
b
"0 and does not change

much with decrease in length fraction. The other Hopf-bifurcation points appears at a p
b

nearer to the p
b
"d

1
. It can be seen that the right-side boundary of the Hopf-bifurcation set

gives the Hopf-bifurcation point getting closer to p
b
"d

1
. Figure 9(b) shows the

Hopf-bifurcation sets for di!erent values of m. Clearly, a decrease in the primary system
damping, m, leads to an earlier inception of Hopf bifurcation. Figure 9(c) also shows the
same e!ect for the pendulum damping, here mM

1
. It can be observed that the e!ect of the

primary system damping is more prominent compared to the secondary system or
pendulum damping. Again, the Hopf-bifurcation sets plotted for di!erent values of damping
need to be used along with the pitchfork bifurcation sets for the appropriate choice of
internal mistunings and length fractions.
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We can also determine the number of pendulums required to achieve the desired
performance under some simplifying assumptions. Suppose that all the pendulums have
same masses and lengths, r, l, and damping constants, mM , but di!erent internal mistunings,
d
1
(d

2
(2(d

n
. We further assume that the mistunings are related as follows:

d
1
#(i!1)w"d

i
, i)n, (41)

where w is the mistuning spacing between the consecutive internal mistunings. Then, the
pitchfork- and Hopf-bifurcation sets can be used to determine the optimum values of d

1
and

d
n
. These two mistunings will determine the e!ective bandwidth of the absorber. The

spacing parameter w can also be expressed as w"(d
n
!d

1
)/(n!1).

The desired absorber performance can be expressed in terms of an &&absorber action'' AA,
AA*1, de"ned as the ratio of the maximum amplitude of the block aP

b
with pendulum in

motion to the minimum amplitude of the block with pendulum in motion. Since the
maximum primary system amplitude arises at the frequency where two pendulums have
non-zero motions, one can show that AA is given by

AA"

JmM 2
1
#(w2/16)

mM
1

. (42)

It can be observed that to have AA"1 we require in"nite number of pendulums (w"0).
The other extreme value for AA would correspond to having no pendulum in resonance.
The maximum value of AA possible for "nite number of pendulums is AA"1

2
[FK /m (2l

1
mM
1
)].

Equation (42) can be used to "nd the number of pendulums needed for the desired value of
AA. If we require AA"1)5 with all damping constants assumed to be 0)20, and d

1
and d

2
being !2)0 and 2)0, respectively, equation (42) gives n"5 (rounded to the next integer).
Thus, for given parameters and required AA"1)5, we need to attach "ve pendulums to the
primary system.

7. SUMMARY AND CONCLUSION

This study has described the dynamics of an (n#1)-degree-of-freedom autoparametric
vibration absorber which consists of an array of n pendulums. A "rst order asymptotic
analysis of the system has been carried out under resonant excitation conditions with
1:1:2: 2 internal resonances. The averaged equations are used to obtain steady state
solutions of the system.

The stability and bifurcation analysis is carried out for the averaged equations. The
single-mode response bifurcates to the double-mode response by pitchfork bifurcations.
The double-mode response can undergo a Hopf bifurcation to limit cycles. This behavior is
the same as found for the coupled-mode response of two-degree-of-freedom autoparametric
systems [13].

The "rst order analysis shows that non-zero steady state solutions with more than one
pendulum oscillating are possible only if condition (30) is satis"ed. The stability analysis
shows that at this point a one-dimensional manifold of equilibria emerges connecting the
non-zero motion of the pendulum to the zero motion and vice versa for some other
pendulum. Thus, except for a measured zero set of values of the external mistuning p

b
, only

one pendulum has a non-zero steady state response over the frequency interval for which
the single-mode solution is unstable. In addition, if the pendulums in the array are
di!erently mistuned with respect to the primary system, the overall frequency interval over
which various double-mode solutions arise and are stable is much wider than the frequency



AUTOPARAMETRIC VIBRATION ABSORBER 135
interval with only one pendulum. Thus, the bandwidth of e!ectiveness can be increased
substantially by using pendulums with slightly di!erent natural frequencies.

To the best of the authors' knowledge, this is the "rst time in the literature that the idea of
a multiple array of autoparametric absorbers has been suggested and its e!ectiveness in
enhancing the absorber bandwidth demonstrated analytically. The authors are currently
investigating the implementation of this idea on a #exible beam with electronic
circuit-based non-linear controllers &mimicking' the multiple pendulum array.
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